If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+18x-49.35=0
a = 4.9; b = 18; c = -49.35;
Δ = b2-4ac
Δ = 182-4·4.9·(-49.35)
Δ = 1291.26
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-\sqrt{1291.26}}{2*4.9}=\frac{-18-\sqrt{1291.26}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+\sqrt{1291.26}}{2*4.9}=\frac{-18+\sqrt{1291.26}}{9.8} $
| 9-6v=15 | | 3+|x-4|=4 | | 6u+8=-10 | | -9(w+6)=18 | | 210+8m=160+ | | 40x6=240 | | -3(x^2-11/3x+1)=0 | | 210+160m=8+13m | | 2z+-5=9 | | 43−3b=59 | | 3(5•2x)-8=50 | | -3(x^2-4/3x+1)=0 | | -11=d/3+-7 | | 1x+74=90 | | -16=-4+-3d | | 9000-500h=7000+500h | | 11=3y−4 | | 9000-500h=7000-500h | | 5+-4u=17 | | 4x+9=128 | | -8=c/3-10 | | -4(2x+5)+x+2=−4(2x+5)+x+2=-11 | | -19x-32=-24x-3 | | (6x+32)+(72-2x)=180 | | 0.02x−1.5=17 | | 4+2f=12 | | (x+13)+(2x+1)=6x-7 | | f(14)=4 | | 74=-6(1+16x)-46x-50+80 | | 4r+-8=3r+-8 | | 7x-4+3x+1=9x | | Dx24=-13 |